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SARLAC is a particle simulation code for studying the propagation of ultra-relativistic elec- 
tron beams. It is used to study the nonlinear evolution of the resistive hose instability. We 
have developed a fast, semi-implicit, iterative field solver which allows us to include a large 
number of Fourier modes in the azimuthal direction. The solver iterates about a solution of 
the field equations dominated by the axisymmetric (m=O) conductivity. This technique has 
proved to be quite successful. We compare some results of the code with those obtained from 
a linearized hose simulation code and show differences when the hose oscillations reach large 
amplitude. 0 1989 Academic Press, Inc. 

We have recently written a number of simulation codes to test various aspects of 
the resistive hose instability in high energy electron beams propagating in resistive 
plasmas. Most methods used previously for treating the instability were restricted 
to small instability amplitudes. These are considered to be of practical interest 
because large amplitude hose-like oscillations quickly destroy the integrity of the 
beam, and because, under appropriate circumstances, the instability “saturates” in 
the linear regime. That is to say, the hose instability is convective in the beam 
frame, and therefore, at any given point in the beam may reach a maximum which 
is still small followed by a decay of the instability as the disturbance convects past. 
Near term experiments, however, are frequently more unstable than can be treated 
by linear models, so we have developed a particle simulation code which can follow 
the evolution of an instability into the nonlinear regime [l-3]. Similar codes have 
been written by Godfrey [4] and Freeman [S]. 

The nonlinear code has borrowed heavily from two of our previous codes, 
SIMM0 [6] and SIMM1 [7] which are particle simulation codes for axisymmetric 
beams and beams with small amplitude hose motions. The particle dynamics of 
those two codes are followed in Cartesian coordinates so the SARLAC code differs 
from these primarily in the calculation of the electromagnetic fields. We have 
developed a fast iterative field solver which allows us to include a large number of 
Fourier modes in the azimuthal direction. 

The code employs many of the approximations found in most linearized propaga- 
tion models [8-lo]. The variables z and t are replaced by z and c = ct - z (the dis- 
tance from the beam head), and all particles remain at constant 5 since u, is 
assumed to be the velocity of light. The frozen approximation is used in the field 
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equations, and the same conductivity model used in the VIPER [8] code is 
employed. Beam dynamics are treated using standard particle simulation techni- 
ques. Current densities, fields, and conductivity are calculated on a polar grid 
(u, 0, [) with u = J r as the radial variable. The lay-down scheme for the particles 
is quadratic in the radial and azimuthal variables and nearest grid point in the axial 
variable. 

The ultra-relativistic approximations used in SARLAC lead to a code structure 
which is substantially different from “conventional” particle simulations. Information 
can only flow in one direction: toward larger {. Also, since individual particles 
always remain at the same axial position within the beam, the simulation can treat 
one slice at a time, thus reducing the number of particles in the simulation at any 
time to w 104. Each beam slice is propagated forward in z until the maximum 
propagation range, zrnax is reached. At this point, particles are loaded into the next 
slice, and the process is repeated. The current density J, conductivity g, and poten- 
tials 6Z and 4 from the previous slice must be read from the disk. The axial step A( 
is variable, and the code has the option of subgridding the field and conductivity 
integrations on a finer axial mesh than is used for the particles. All diagnostics are 
done with post-processors. The dimensionless units used in VIPER and SIMM1 are 
employed throughout [7,8]. 

ELECTROMAGNETIC FIELDS 

The frozen approximation to Maxwell’s equations is performed in a gauge 
suggested by Lee [l 11. The equations are 

with the frozen condition 

a2a aa 
V:(tZ+&-ai’= -J,+az 

-v: $= -v, . (aV,qd), 

dA’=X=z=- 
ai 

aa ad aAl= 
a2 

and CZ=A,-4. 
The boundary conditions for 12, and 4 are 

a(r) = 0, [=O 

d(r) = 0, r=o 

a(i) = 0, r = Max 

4(i) = 0, r= R,,,. 

(1) 

(2) 

(3) 
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These conditions correspond to a beam propagating at the speed of light in a 
perfect conductor of radius R,,,. 

Equations (1) and (2) are “diffusion-like” equations with the resistivity acting as 
a diffusion coefficient. There is, then, a preferred direction of information flow in < 
which is always toward larger c. This is consistent with the ultrarelativistic condi- 
tion. The conditions of Eqs. (3) are valid as long as the particle motions are 
paraxial. This approximation breaks down in the limit of extremely large hose 
motions. In practice, because the code is written in a cylindrical coordinate system 
with a limited number of azimuthal modes, the code becomes invalid long before 
the paraxial approximation becomes invalid. 

For completeness, we write the fields and particle dynamics as 

a(ymh) -= +q/cvIa aZ 

(4) 

ay qEz -=- 
aZ mc2’ 

The equations are similar in form to the EMPULSE [12] equations with an 
additional term a26X/di2 in the first equation. A fully implicit method for solving 
these equations has been developed by Hui [ 131. That field solver Fourier analyzes 
the azimuthal dependence of all quantities into a series of modes exp(im@) and per- 
forms a full complex matrix inversion, which is extremely time consuming and thus 
impractical for long simulation studies. The major advance of the SARLAC code is 
the development of a field solver which does not require a complete matrix inver- 
sion. The SARLAC field solver uses a predictor-corrector method which iterates 
about a solution obtained by assuming that the axisymmetric (m = 0) conductivity 
dominates the solution. The m = 0 mode of any positive definite function is always 
larger than any other single mode and in the case of beam generated conductivity 
which is generated all along the beam axis, this mode is large compared to the 
other modes even for large excursions of the beam from axisymmetry, as long as the 
front of the beam is on the axis. 

In the Appendix, we develop an algorithm for numerically solving Eq. (1) over 
the interval [,, < 4’ < [, + 1. The solution is 

a n-cl = 

1 

,n-p-1 ~(l-e-“~~)+J~~(~~l-(l-e-ad()) 

+V~(r*+~)-$(O~[-(l-e-ud~))}/(l-&(l-e-nd[)), (5) 
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where the superscript n represents the function evaluated at i,. The conductivity, 0, 
is evaluated in the interval (i,,, [,, + , ). Rewrite Eq. (5) as 

where 

a n+l=F(~n,,n-‘;J~,.)+V:(a+~)f(a), (6) 

F(LV’, E-l; Jb, rs)= ,“-6Enp1 

+Jh-&&-(l-P’~)) j-j-3 (1 -Q9) (7) 

and 

((r&-(1 -C0~~))/c72 
‘(O)=(l- 1/2adc(l -e-Odi))’ 

We see that 

f(o) + Aila for 0 large 

f(o) --+ (A02 for 0 small. 

Equation (2) is simply differenced to give 

-v: a ?l+l-,, 
4 = -v, . (oy,&. 

(8) 

Note that we have omitted the superscripts from some of the a and 4 terms in 
Eqs. (6) and (9). By choosing these terms at the nth or (n + 1)th (or some combina- 
tion of these levels), the differencing can be made explicit or implicit to some formal 
accuracy. Our experience has been that the algorithms for these equations are 
numerically unstable if they are explicitly differenced. An implicit differencing can 
eliminate the instability, but at the expense of a complicated matrix inversion due 
to the azimuthal coupling of 0 with the potentials. To avoid this, we have chosen 
instead to rewrite Eqs. (6) and (9) as 

a “+‘-V:(a+~)fo(~)=F(a”, an-‘; JM ~)+v:(a+~)(f(~)-fo(~)) (10) 

and 

-v: 
,n+‘-,n 

A5 
+v, -(a,Vqb)= -v, * (a-a,)V,g, (11) 

where 

h(a) = & /;*fMW de, 1 217 
fJo=Ig o s a( 0) dt?. (12) 

Equations (10) and (12) are formally the same as Eqs. (6) and (9). However, 
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since go does not vary in azimuth, the left-hand sides of these equations can be 
evaluated at the upper level without involving convolution sums, which leads to a 
tridiagonal form for d” + ’ and 4” + ‘. The right-hand sides can be evaluated 
explicitly since the functions are known. The simplest differencing scheme leads to 
a first-order algorithm. We have chosen a predictor-corrector method which is 
accurate to second order and is quite stable.’ For the sake of brevity, we will not 
go into the details of the differencing, but they are easily reproduced. We solve the 
equations in the Fourier transformed space (u, m, [) always keeping the right-hand 
sides explicit. The right-hand sides, then, can be evaluated in (u, 8, 0 thus avoiding 
convolution sums on the right-hand sides as well. The method of adding and sub- 
tracting averaged terms to gain stability without full matrix inversions is similar to 
that used by Harned [ 141 for a different set of equations. 

NUMERICAL ISSUES 

In SARLAC, the number of modes N, and radial mesh size du remain fixed 
throughout a run. Typically, N, = 16 or 32, and Au = 0.125 aAi2, where a, is a 
characteristic initial beam radius. The axial grid spacing A( is specified for each 
slice at the beginning of the run. In general, Al: is allowed to increase with [, since 
(at least in the linear regime) the c-variation is characterized by the dipole decay 
length, na(r = O)ai/2c, which usually increases monotonically throughout the pulse. 
However, field solver tests have shown that the axial step size must often be 
reduced when the beam displacement is large. This is accomplished by subgridding 
the field and conductivity integrations. In most cases, A[ is chosen to be small 
enough that subgridding is rarely involved. 

The beam current density Jb is intrinsically noisy because of the statistical 
fluctuations arising from the small number of particles in each u - 8 grid cell. This 
is particularly troublesome near u = 0. Increasing the number of simulation particles 
per slice reduces noise problems but is computationally expensive. Other methods 
which we have employed include accumulating current densities on a coarser radial 
mesh than is used for the field solver and interpolating, averaging over the first few 
radial grid points and using an azimuthal filtering technique near the origin. 

Originally, we assigned random initial values of 0 to the particles but found that 
this procedure resulted in large initial noise levels for the hose instability and in 
substantial drifts in the beam head. The noise effects are reduced by loading the 
particles in pairs on opposite sides of the beam. If the velocities are also loaded 
symmetrically, the m = 1 azimuthal mode is eliminated in the initial stages of 
propagation. A small specified perturbation can be added to all particles in a given 
beam slice to start the hose instability in a controlled manner. Higher order Fourier 
modes can be suppressed by loading four or more particles with the appropriate 
symmetry. The elimination of higher order modes has not proven particularly useful 
since the nonlinear coupling of these modes is usually too weak to introduce 
significant hose growth. 
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The scattering of beam electrons by the neutral gas is known to play an impor- 
tant role in the evolution of the beam. SARLAC uses an algorithm originally 
developed by Chambers [6,15] and modified by Hughes and Godfrey [16] to 
provide a more accurate representation of the scattering process. Each beam par- 
ticle is periodically scattered through a randomly chosen angle whose characteristic 
magnitude is determined by the energy and the gas density. After an initial transient 
phase, the beam reaches a quasi-static equilibrium. The beam radius then expands 
slowly due to scattering. If beam particles are loaded in pairs, a straightforward 
application of the scattering algorithm will eventually introduce significant noise 
and drifts at the beam head. These effects can be eliminated by scattering the 
particles in pairs. The random velocity dvi applied to a given particle at a given z 
step is balanced by adding -dvi to the particle with which it was originally paired. 
This technique has been highly successful in practice. 

10-z- I I I I I 
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FIG. 1. Plot of the beam x and y centroids at [ = 50 cm as a function of the beam propagation 
distance. The initial perturbation y,= 10m5 so that saturation is reached while the hose instability is 
in the linear regime. The dashed line is the y centroid and the solid line is the x centroid. The initial 
perturbation is chosen in the y direction. 



SARLAC 199 

The simulation code is best suited for treating cases in which the hose displace- 
ment is a few times the nominal radius a,. The coordinate system is chosen to have 
the tinest resolution in both the radial and azimuthal directions near the origin. For 
extremely large beam oscillations, when the beam displacement reaches a substan- 
tial fraction of the wall radius, the accuracy of the simulation is reduced and the 
field solver is sometimes subject to numerical instabilities. The field solver 
instabilities appear to be triggered by conditions in which the local conductivity 
centroid gets far enough off the coordinate system axis that the conductivity is not 
dominated by the m = 0 mode. Usually this conductivity is generated by avalanche 
due to strong, localized, electric fields; such fields can arise when the hose motion 
is quite nonlinear [ 11. Evidence for very strong electric fields associated with non- 
linear hose motion has been seen in the ETA experiments [ 173, so the strong fields 
may be physical (up to a point). Considerable effort has been made to make the 
field solver more robust, and with careful differencing we have had some success. 

1000 

100 

FIG. 2. Plot of the saturated hose amplitude as a function of the distance back from the point of 
the initial perturbation. The SARLAC results are marked with *‘s while the VIPER results are marked 
with +‘s. 
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FIG. 3. Plot of the beam x and y centroids at [ = 50 cm as a function of the beam propagation 
distance. The initial perturbation is y0 = lo-’ so that the hose instability becomes nonlinear. When the 
hose motion becomes large, the beam radius increases and the frequency of the oscillation decreases. 
Again, the dashed line is the y centroid and the solid line is the x centroid. 

We have also found that these problems can be mitigated by using small c grids in 
regions where there are large hose amplitudes. Even so, we believe the code to be 
best suited for moderate hose oscillations. 

NUMERICAL RESULTS 

We have run the code under a variety of conditions. Many of the runs have been 
checked against the results of Hui and Lampe [13] and the agreement between 
these codes is satisfactory. We show here the results of two runs; one for small 
perturbations, in which the hose stays in the linear regime, saturates and decays, 
and one with moderate initial perturbations, for which the hose grows and becomes 
nonlinear. The parameters for both sets of runs are 
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a, = 0.5 cm, the beam radius. 
Z= 10 kA, the beam current . 
y = 100, the beam energy. 
i, = 15 cm, the beam current rise length. 
a, = 81a,, the outer radius of the simulation. 

Y pert = y,, sin 24 (c - &&,), the initial perturbation over the range 

io < r < 1.510, co = 10 cm. 

(Note, this perturbation is in the y direction.) 
For the first run we used a very small initial hose amplitude y, = 10-Sa, which 
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FIG. 4. Plot of the beam particle positions at .z = 0. The particles are loaded with a Bennett distribu- 
tion. The beam current increases with increasing ( but this is not indicated by increasing numbers of 
particles because the particles are weighted with the charge. 
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kept the hose oscillations linear over the length of the beam. For this case, the hose 
instability grows and saturates as seen in Fig. 1. Figure 2 shows a comparison of the 
saturation amplitude at various distances from the beam head with the results of 
the linearized VIPER code, which uses the multi-component model [18] to repre- 
sent the particle dynamics approximately. The oscillation frequency, growth rate, 
and saturation amplitude agree quite well with the VIPER code [S]. 

The parameters chosen for the second run were the same except for a much 
larger initial amplitude y, = 10 -‘a,, so that the hose oscillations would become 
nonlinear. Figure 3 shows the growth of the hose through the x and y centroids of 
the beam. The dashed line is the y centroid which is much larger than x because 
the pertubation is initialized in y. After the hose displacements reach the order of 
the beam radius, the frequency of the oscillation decreases. This is because the beam 
is spreading in radius and the wavelength of the oscillation scales as the radius. 

0 10 20 30 40 50 60 
Zeta (cm) 

0 10 20 30 40 50 60 
2=360. Zeta (cm) 

FIG. 5. Plot of the beam particle positions at z = 360 cm. The beam head has begun to blow off and 
the hose perturbation has grown enough to be easily seen. 
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and integrate the equation over the inverval i,, to c, where c,, < i < C, + i, 

e’“di”(V:(61 + 4) + Jb) d[‘. 

In order to evaluate the right-hand side of Eq. (A2), we assume that 
V:(Qi +4) + Jb does not change much over the interval A[ so that it can be 
evaluated at some intermediate point and taken outside the integral. In addition, we 
assume that to a good approximation, we can write j Q dc” N a(( - c,), where CJ is 
also evaluated somewhere on the interval. In practice, we know CJ only at he 
midpoint of the interval, so that is the value we use. Making these approximations, 
we obtain 

aa adi -=- e 
a[ a[ cn 

-“L’in)+(V:(a+()+J,)~(l-e-(~-;niu). 

We integrate the equation once again to obtain LV’+ I, 

We center the LVX/aC derivative at [, and obtain 

a n+l= an-an-1 
i 

& (1 -ePadi) 

+(V~(6Z+()+Jb)-$(~A~--(l-e~‘“‘)) 

& (1 - eCOdi)). 

(A3) 

(A4) 

645) 

If the right-hand side of Eq. (Al) and (T are constant in l, this algorithm 
represents an exact solution to the differential equation. The accuracy of the 
algorithm is determined by the variability of the functions and not by the size of 
cr. This is an important property of the solution, since 0 varies over several orders 
of magnitude from the head to tail of the beam, but generally does not change 
much over a grid interval. 
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